Module 1 – What is economics and economic evaluation?

Centre for Health Policy
Melbourne School of Population of Global Health

Insulin: A case study

- The discovery of insulin by Banting & Best turned a fatal disease (Type 1 Diabetes) into a chronic condition
- The first commercial insulin preparations contained numerous impurities
- 1930: Long acting insulins
- 1980s: Purified pork insulin/recombinant human insulin
- 1996: Diabetes Control and Complication trials demonstrated that intensive blood glucose control could reduce the complications of Type 1 Diabetes
- 2000s: Analogue insulins

Lung 2014 (PLOS One)

- The relative mortality of people with Type 1 Diabetes has improved
- Relative risk (pre-1971): 6 times general population
- Relative Risk (post-1990) : 3 times general population
- There is still a life expectancy gap of 11-13 years

Overview of the day

- Module 1: What is economics and economic evaluation?
- Module 2: Measuring health-related quality of life and use of clinical outcomes
- Module 3: Collecting relevant health system and patient cost data
- Module 4: Economic evaluation, uncertainty and modelling
- Module 5: Examples & getting projects funded
- Workshop of selected case studies

COMMONWEALTH OF AUSTRALIA
Copyright Regulations 1969

WARNING
This material has been provided to you pursuant to section 49 of the Copyright Act 1968 (the Act) for the purposes of research or study. The contents of the material may be subject to copyright protection under the Act.

Further dealings by you with this material may be a copyright infringement. To determine whether such a communication would be an infringement, it is necessary to have regard to the criteria set out in Part 3, Division 3 of the Act.

DO NOT REMOVE THIS NOTICE
Insulin analogues “afford more flexible treatment regimens with a lower risk of the development of hypoglycemia” (NEJM 2005)

- **Short acting insulin** (taken at meal time)
- **Long acting insulin** (taken daily)

What are the benefits of insulin analogues?

- It is necessary to focus on the incremental benefit relative to a comparator (human or animal insulin)
- Rapid acting analogues reduce postprandial hyperglycemia (high blood sugar after meals)
- Long acting analogues reduce the risk of hypoglycemia (low blood sugar, which impact on judgment and can lead to a diabetic coma)

What are the benefits of reducing “hypos”?

1) Quality of life
 - Patients value not having hypoglycemic episodes — they have reduced quality of life during an episode and in the long-term due to increased complications
 - Perhaps all people with Diabetes are affected by a “fear of hypos”

2) Clinical impact
 - There is emerging evidence of increased mortality (particularly after cardiovascular events)

Recent evidence of survival post CVD event

By 10 years follow-up, patients with a history of hypos had significantly lower survival rates compared to those without.

Are Analogues “value for money”?

- In Australia these decisions are made by the Pharmaceutical Benefits Advisory Council (PBAC) on the basis of cost-effectiveness.
- Example of Insulin Glargine:
 - Considered 5 times by the economic sub-committee of the PBAC
 - First considered by the PBAC in 2003
 - Finally listed in 2006
 - Company projected to cost $145 million over first four years (actual cost $263 million)
What the PBAC thought...

Comments from Oct 2005 Meeting:
“A number of problems with this analysis were identified during the evaluation, and the PBAC considered that the trial-based incremental costs per extra hypoglycaemic event avoided could be higher than estimated in the submission”

“The PBAC did not accept other assumptions in the economic model”

Recommendation: Reject

What evidence do we need to make a decision?

Information on:
• Outcomes – including assessment of Quality of Life (Module 2)
• Costs – not only of the therapy, but any savings (e.g. reduced hospitalisations caused by “hypos” at the time of event and subsequent secondary complications, e.g. organ damage) (Module 3)
• How would we extrapolate the long-term effects of a “hypo” on mortality? How do we bring it all together? (Module 4)
• Practical applications (Final session)

Food for thought: health system performance

Health outcomes are driven by productivity and cost-effectiveness of interventions

What is economics?

• Economics is concerned with the allocation of scarce resources
• Resources (labour, materials, natural resources etc.) are broadly fixed at any moment in time
• Therefore, choices have to be made concerning how to use these resources:
 – more on housing or more on a car
 – more health care or tax cuts

What is economic evaluation?

• Premise: scarce (health care) resources
• Aim: to maximise health gain with the available resources
• Method: compare the cost and effectiveness of therapies
• Balance: about costs and effects

Economic evaluation provides explicit criteria to aid in making choices
Types of economic evaluation

<table>
<thead>
<tr>
<th>Question</th>
<th>Yes</th>
<th>No</th>
<th>Costing study</th>
<th>Cost-minimization study</th>
<th>Cost-benefit analysis</th>
<th>Cost-effectiveness analysis</th>
<th>Cost-consequence analysis</th>
<th>Cost-utility analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Is effectiveness of interventions equal?</td>
<td></td>
<td></td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Can all outcomes be valued in monetary terms (e.g., willingness to pay)?</td>
<td></td>
<td></td>
<td></td>
<td>Cost-minimization study</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Is there a measurable unidimensional outcome</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cost-benefit analysis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Can outcomes be measured as quality adjusted life years?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cost of illness

- A form of cost analysis
- It attempts to quantify burden – lost productivity, costs of health care, social services, courts, etc.
- It is often used for advocacy
- It tells you the size of the problem, but not what you should do about it
- It provides a partial analysis and rarely provides the context of the cost in relation to overall expenditure

Osteoporosis - An Australian Example

Osteoporosis Costing Data for Australia

![Graph showing cost of osteoporosis in Australia](image)

Watts et al., 2013

Cost-minimisation

- A special form of cost effectiveness analysis
- It compares at least two treatments
- Outcomes are measured using same measure (e.g., number of stroke events)
- Outcomes are statistically equivalent (with sufficient power to say that they are the same, not just to say that there is no evidence of difference)
- Cost-effectiveness analysis is preferable

TUBERCULOSIS causes annually more than 150,000 deaths in the United States...

If we assume that the net value of a year of human life is at least $50, the real loss to the Nation may be estimated at $240,000,000 per annum. These astounding and almost incomprehensible figures are far from being an exaggeration..."

($50 in 1906 ~ $1200 in 2008)

Source: Huber, Consumption: It’s relation to man (1906)

© Health Economics Group 2016
"In addition to the tremendous human cost, chronic diseases exact a tremendous financial toll on our health care resources. Care for patients with diabetes costs $130 billion each year alone, and this amount is growing. Tackling chronic diseases is also straining our public health departments…"

Barack Obama, Health Care Plan, 2008

Cost-minimisation - Example

Cost-minimisation analysis for prostate resection

"Two systematic reviews based on the Meritree to December 2006 and February 2012, including up to now randomised controlled trials using the PVP 80-W (five trials) or 120-W system (four trials) and with up to 36-month follow-up, suggest PVP can generally be considered non-inferior to TURP for the management of symptomatic BPH."

However,

"Despite the apparent overall non-inferiority of PVP in functional and safety outcomes, there is some recent data suggesting that PVP may result in higher re-operation rates in some patient subgroups, particularly those with a larger prostate volume. Although Thangasamy et al. reported no statistically significant difference in unplanned re-operation rates between PVP and TURP in their review, there was a clear trend for a difference favouring TURP (RR 1.87, 95% CI 0.65–5.39). If true, this would likely have cost implications."

Cost-benefit analysis

- Measures inputs and outcomes in dollars
- Enables comparisons across sectors and different clinical outcomes
- Addresses issues such as net gain to society
- Addresses the question of whether the program is worthwhile to society

Cost-benefit analysis

The value of a quality-adjusted life year is estimated at $432,000

Value of a Quality-Adjusted Life Year ($)

- There are four main methodologies to measure the value of QALY:
 - Human capital - reflects society's willingness to generate earnings, but does not capture a social individual
 - Human capital (willingness to pay) - based on value of life in relation to non-occupied leisure time
 - Willingness to pay - reflects individuals' subjective value of life in relation to non-occupied leisure time
 - Willingness to pay - reflects individuals' subjective value of life in relation to non-occupied leisure time
- The median value across all studies is $432,000

Source: Mohan Review
Types of economic evaluation

<table>
<thead>
<tr>
<th>Question</th>
<th>Answer</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Is there good evidence on effectiveness of interventions being compared?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Is effectiveness of interventions equal?</td>
<td>NO</td>
<td>Costing study</td>
</tr>
<tr>
<td>Can all outcomes be valued in monetary terms (e.g. willingness to pay)?</td>
<td>YES</td>
<td>Cost-minimization study</td>
</tr>
<tr>
<td>Is there a measurable unidimensional outcome</td>
<td>NO</td>
<td>Cost-benefit analysis</td>
</tr>
<tr>
<td>Can outcomes be measured as quality adjusted life years?</td>
<td>NO</td>
<td>Cost-utility analysis</td>
</tr>
<tr>
<td></td>
<td>YES</td>
<td>Cost-effectiveness analysis</td>
</tr>
<tr>
<td></td>
<td>YES</td>
<td>Cost-consequence analysis</td>
</tr>
</tbody>
</table>

Cost-effectiveness analysis (CEA)

- The most commonly used method of economic evaluation
- Compares costs and outcomes
- Requires a common, unambiguous outcome measure
- Outcomes measured in natural unit:
 - cases detected
 - deaths prevented
 - life years gained

Cost-effectiveness plane

- New treatment dominates
 - less costly
 - more effective
- New treatment less costly
 - more effective
 - less costly
- Existing treatment dominates
 - less costly
 - more effective

CEA example

Cost-effectiveness of lowering blood pressure with a fixed combination of perindopril and indapamide in type 2 diabetes mellitus: an ADVANCE trial-based analysis

- The intervention involved the use of blood pressure drugs in diabetes
- The intervention cost $1350 (over four years)
- The intervention group experienced lower hospital & other health care costs (~$800 in savings)
- The net cost was approximately $502.
- There was an increase in life expectancy of 0.05 life years over remaining lifetimes

Cost-consequence analysis (CCA)

- This is a form of economic evaluation in which the multi-dimensional outcomes are reported separately from costs.
- Provide information to the decision maker on the costs and consequences of an intervention
- Does not explicitly value outcomes relative to costs
- Mainly applied in complex public health interventions with multiple outcomes
Types of economic evaluation

<table>
<thead>
<tr>
<th>Question</th>
<th>Answer</th>
<th>Evaluation Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Is there good evidence on effectiveness of interventions being compared?</td>
<td>YES</td>
<td>Costing study</td>
</tr>
<tr>
<td>Is effectiveness of interventions equal?</td>
<td>YES</td>
<td>Cost-minimization study</td>
</tr>
<tr>
<td>Can all outcomes be valued in monetary terms (e.g., willingness to pay)?</td>
<td>NO</td>
<td>Cost-benefit analysis</td>
</tr>
<tr>
<td>Is there a measurable unidimensional outcome?</td>
<td>YES</td>
<td>Cost-effectiveness analysis</td>
</tr>
<tr>
<td>Can outcomes be measured as quality adjusted life years?</td>
<td>NO</td>
<td>Cost-consequence analysis</td>
</tr>
</tbody>
</table>

Using QALYs to measure outcomes

- **Time to first event**
- **Quality of life scale (0-1)**
- **Quality adjusted life years gained**
- **Life expectancy**

CUA Example – Cardiac Devices

- **Comparison of implantable cardiac resynchronization devices** with (CTR-P) and without defibrillation (CTR-D)
 - CTR-D was more costly: £11,689
 - CTR-D was however more effective: 0.29 QALYs

CUA Example – Cardiac Devices

- **Cost-effectiveness acceptability curve**
 - 26.3% of simulations cost effective
 - 7.8% of simulations cost effective

Fox, 2007